Add sketch 4: lenses

This commit is contained in:
Joshua Seigler 2019-11-10 23:12:56 -05:00
parent f09b4c66f0
commit d3cbff29fc
5 changed files with 327 additions and 5 deletions

1
app/assets/4/index.html Symbolic link
View file

@ -0,0 +1 @@
../../sketch-template.html

View file

@ -9,11 +9,12 @@
<body>
<main>
<h1>P5.js generative art</h1>
<ol>
<li><a class="sketch" href="1/">gradient burst</a></li>
<li><a class="sketch" href="2/">gradient jungle</a></li>
<li><a class="sketch" href="3/">peanut butter and jelly</a></li>
</ol>
<ul>
<li>2019-11-05 - <a class="sketch" href="1/">gradient burst</a></li>
<li>2019-11-07 - <a class="sketch" href="2/">gradient jungle</a></li>
<li>2019-11-09 - <a class="sketch" href="3/">peanut butter and jelly</a></li>
<li>2019-11-10 - <a class="sketch" href="4/">lenses</a></li>
</ul>
</main>
</body>
</html>

View file

@ -0,0 +1,37 @@
precision mediump float;
// lets grab texcoords just for fun
varying vec2 vTexCoord;
// our texture and image coming from p5
uniform sampler2D u_src;
uniform sampler2D u_map;
// how much to displace by (controlled by mouse)
uniform float u_intensity;
void main() {
vec2 uv = vTexCoord;
// the texture is loaded upside down and backwards by default so lets flip it
uv = 1.0 - uv;
// get the displacement map as a vec4 using texture2D
vec4 mapTex = texture2D(u_map, uv);
// lets get the average color of the rgb values
float avg = dot(mapTex.rgb, vec3(0.33333));
// then spread it between -1 and 1
avg = avg * 2.0 - 1.0;
// we will displace the image by the average color times the amt of displacement
float disp = avg * u_intensity;
// displacement works by moving the texture coordinates of one image with the colors of another image
// add the displacement to the texture coordinages
vec4 srcTex = texture2D(u_src, uv + disp);
// output the image
gl_FragColor = srcTex;
}

278
app/sketches/4.js Normal file
View file

@ -0,0 +1,278 @@
new p5(sketch => {
sketch.disableFriendlyErrors = false;
// reused dimensions and a seed
let seed, width, height, noiseResolution, overdraw, blurQuality;
const layers = {}; // offscreen layers
const shaders = {}; // shaders
const lib = {}; // libraries
sketch.preload = () => {
shaders.whiteNoise = sketch.loadShader(
'../shaders/base.vert',
'../shaders/white-noise.frag'
);
shaders.displacement = sketch.loadShader(
'../shaders/base.vert',
'../shaders/displacement.frag'
);
shaders.blurH = sketch.loadShader(
'../shaders/base.vert',
'../shaders/blur-two-pass.frag'
);
shaders.blurV = sketch.loadShader(
'../shaders/base.vert',
'../shaders/blur-two-pass.frag'
);
lib.voronoi = new Voronoi()
}
sketch.setup = () => {
filenamePrefix = 'seigler-p5-3-lenses';
overdraw = 0.1;
width = Math.floor(sketch.windowWidth * (1 + overdraw));
height = Math.floor(sketch.windowHeight * (1 + overdraw));
noiseResolution = [0.2, 0.1, 0.05, 2];
blurQuality = 1;
window.onhashchange = () => {
seed = window.location.hash.substr(1);
generate();
};
seed = window.location.hash.substr(1);
sketch.colorMode(sketch.HSL, 1);
sketch.createCanvas(sketch.windowWidth, sketch.windowHeight);
layers.buffer = sketch.createGraphics(width, height);
layers.buffer.colorMode(sketch.HSL, 1);
layers.cells = sketch.createGraphics(width, height);
layers.cells.colorMode(sketch.HSL, 1);
layers.cells.noStroke();
layers.noise = sketch.createGraphics(width, height, sketch.WEBGL);
layers.displacement = sketch.createGraphics(width, height, sketch.WEBGL);
layers.blur1 = sketch.createGraphics(width, height, sketch.WEBGL);
layers.blur2 = sketch.createGraphics(width, height, sketch.WEBGL);
generate();
};
sketch.draw = () => {
};
sketch.keyReleased = () => {
if (sketch.key == ' ') {
seed = null;
generate();
} else if (sketch.key == 's') {
sketch.saveCanvas(filenamePrefix + seed + '.jpg', 'jpg');
}
};
sketch.doubleClicked = () => {
seed = null;
generate();
};
let resizeTimer;
sketch.windowResized = () => {
clearTimeout(resizeTimer);
resizeTimer = setTimeout(() => {
window.location.reload();
}, 100);
};
function generate() {
if (seed) {
sketch.randomSeed(seed);
} else {
let seed = Math.floor(sketch.random(1000000000000));
window.location.hash = seed;
sketch.randomSeed(seed);
}
sketch.noiseSeed(sketch.random(0, 1000000000));
sketch.blendMode(sketch.BLEND);
// sketch.background(0.5);
let stripeAngle = sketch.random(0, Math.PI);
let stripeWidth = Math.min(width, height) / sketch.random(10, 80);
let stripeLength = Math.max(width, height) * Math.SQRT2;
let numStripes = Math.ceil(Math.SQRT2 * stripeLength / stripeWidth);
let stripeHue = sketch.random();
let ox = width/2, oy = height/2;
let dx = Math.cos(stripeAngle) * stripeLength / 2;
let dy = Math.sin(stripeAngle) * stripeLength / 2;
layers.buffer.strokeCap(sketch.SQUARE);
for (let i = Math.ceil(numStripes / 2); i > 0; i--) {
layers.buffer.stroke(stripeHue, 0.5, 0.2 + 0.1 * (i % 2));
layers.buffer.strokeWeight((i * 2 - 1) * stripeWidth);
layers.buffer.line(ox - dx, oy - dy, ox + dx, oy + dy);
}
// square pixels per circle, helps with gridding
sketch.blendMode(sketch.BLEND);
let unit = Math.min(width, height) / Math.round(sketch.random(3, 10));
let rows = Math.max(1, Math.round(height / unit / Math.sin(Math.PI / 3))) + 1;
let cols = Math.max(1, Math.round(width / unit)) + 1;
let noiseOffset = unit * 200 + Math.SQRT2;
let gridPoints = [];
for (let index = 0; index < rows * cols; index++) {
let col = index % cols;
let row = Math.floor(index / cols);
let noise = noiseResolution.map(
(resolution, noiseIndex) => {
// let gridScale = resolution / Math.min(rows, cols);
return sketch.noise(
noiseOffset * (noiseIndex + 1) + (row - rows / 2) * resolution,
noiseOffset * (noiseIndex + 1) + (col - cols / 2) * resolution
)
}
);
gridPoints.push({
row,
col,
noise,
});
}
gridPoints.forEach(point => {
let { col, row, noise: [n0, n1, n2, n3] } = point;
point.x = (
width / (cols - 1) * col
+ (row % 2 - 0.5) * unit / 2
+ 1 * n0 * unit * Math.cos(Math.PI * 2 * flattenPerlin(n1))
);
point.y = (
height / (rows - 1) * row
+ 1 * n0 * unit * Math.sin(Math.PI * 2 * flattenPerlin(n1))
);
});
let bbox = {
xl: 0 - unit / 2,
xr: width + unit / 2,
yt: 0 - unit / 2,
yb: height + unit / 2
};
let diagram = lib.voronoi.compute(gridPoints, bbox);
// let's draw cells
layers.cells.background(0.5);
diagram.cells.forEach(cell => {
if (cell.halfedges.length >= 3) {
layers.cells.fill(cell.site.noise[2]);
layers.cells.beginShape();
for(let i = 0; i < cell.halfedges.length + 1; i++) {
const he = cell.halfedges[i % cell.halfedges.length];
const {x: ax, y: ay} = he.getStartpoint()
const {x: bx, y: by} = he.getEndpoint()
if (i === 0) {
layers.cells.vertex(
sketch.lerp(sketch.lerp(ax, bx, 0.5), cell.site.x, 0.1),
sketch.lerp(sketch.lerp(ay, by, 0.5), cell.site.y, 0.1)
);
first = false;
} else {
// check angular edge length
layers.cells.quadraticVertex(
sketch.lerp(ax, cell.site.x, 0.1),
sketch.lerp(ay, cell.site.y, 0.1),
sketch.lerp(sketch.lerp(ax, bx, 0.5), cell.site.x, 0.1),
sketch.lerp(sketch.lerp(ay, by, 0.5), cell.site.y, 0.1)
);
}
}
layers.cells.endShape();
}
});
// blur the cells
let blurSize = unit / 300;
for (let pass = 0; pass < blurQuality; pass++) {
let radius = (blurQuality - pass) * blurSize / blurQuality;
layers.blur1.shader(shaders.blurH);
shaders.blurH.setUniform('tex0', pass == 0 ? layers.cells : layers.blur2);
shaders.blurH.setUniform('texelSize', [radius/width, radius/height]);
shaders.blurH.setUniform('direction', [1.0, 0.0]);
layers.blur1.rect(0, 0, width, height);
layers.blur2.shader(shaders.blurV);
shaders.blurV.setUniform('tex0', layers.blur1);
shaders.blurV.setUniform('texelSize', [radius/width, radius/height]);
shaders.blurV.setUniform('direction', [0.0, 1.0]);
layers.blur2.rect(0, 0, width, height);
}
layers.cells.image(layers.blur2, 0, 0, width, height);
layers.displacement.shader(shaders.displacement);
shaders.displacement.setUniform('u_src', layers.buffer);
shaders.displacement.setUniform('u_map', layers.cells);
shaders.displacement.setUniform('u_intensity', 10 / unit);
layers.displacement.rect(0, 0, width, height);
sketch.blendMode(sketch.BLEND);
sketch.image(
layers.displacement,
Math.floor(-width * overdraw / 2),
Math.floor(-height * overdraw / 2)
);
layers.noise.shader(shaders.whiteNoise);
shaders.whiteNoise.setUniform('u_resolution', [width, height]);
shaders.whiteNoise.setUniform('u_alpha', 0.05);
layers.noise.rect(0, 0, width, height);
sketch.blendMode(sketch.OVERLAY);
sketch.image(layers.noise, 0, 0);
// sketch.stroke(0);
// sketch.strokeWeight(4);
// diagram.vertices.forEach(vertex => {
// sketch.point(vertex.x, vertex.y);
// });
// diagram.edges.forEach(({va, vb}) => {
// sketch.line(
// va.x,
// va.y,
// vb.x,
// vb.y
// );
// });
// sketch.stroke('#E00');
// gridPoints.forEach(({x, y}) => {
// sketch.point(x, y);
// });
}
// Fisher-Yates shuffle
function shuffle(array) {
var i = 0, j = 0, temp = null;
for (i = array.length - 1; i > 0; i -= 1) {
j = Math.floor(sketch.random() * (i + 1));
temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
// give Perlin noise 0-1 a uniform distribution
function flattenPerlin(x) {
return 23.8615 * Math.pow(x, 5)
- 59.6041 * Math.pow(x, 4)
+ 47.2472 * Math.pow(x, 3)
- 11.3053 * Math.pow(x, 2)
+ 0.806219 * x - 0.00259101;
}
// returns abs angle from a to b to c
function three_point_angle(A,B,C) {
var AB = Math.sqrt(Math.pow(B.x-A.x,2)+ Math.pow(B.y-A.y,2));
var BC = Math.sqrt(Math.pow(B.x-C.x,2)+ Math.pow(B.y-C.y,2));
var AC = Math.sqrt(Math.pow(C.x-A.x,2)+ Math.pow(C.y-A.y,2));
return Math.acos((BC*BC+AB*AB-AC*AC)/(2*BC*AB));
}
});

View file

@ -35,6 +35,11 @@ code {
background-color: #222;
}
ul {
list-style: none;
padding-left: 0;
}
footer {
position: fixed;
bottom: 0;