![]() |
Dash Core
0.12.2.1
P2P Digital Currency
|
Go to the source code of this file.
Macros | |
#define | WNAF_BITS 256 |
#define | WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w)) |
#define | ECMULT_CONST_TABLE_GET_GE(r, pre, n, w) |
Functions | |
static int | secp256k1_wnaf_const (int *wnaf, secp256k1_scalar s, int w) |
static void | secp256k1_ecmult_const (secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) |
#define ECMULT_CONST_TABLE_GET_GE | ( | r, | |
pre, | |||
n, | |||
w | |||
) |
Definition at line 23 of file ecmult_const_impl.h.
Referenced by secp256k1_ecmult_const().
#define WNAF_BITS 256 |
Definition at line 18 of file ecmult_const_impl.h.
Referenced by secp256k1_wnaf_const().
#define WNAF_SIZE | ( | w | ) | ((WNAF_BITS + (w) - 1) / (w)) |
Definition at line 20 of file ecmult_const_impl.h.
Referenced by secp256k1_ecmult_const(), secp256k1_wnaf_const(), and test_constant_wnaf().
|
static |
Definition at line 125 of file ecmult_const_impl.h.
|
static |
Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val) with the following guarantees:
Adapted from The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks
, Okeya and Tagaki. M. Joye (Ed.) CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
Numbers reference steps of Algorithm SPA-resistant Width-w NAF with Odd Scalar
on pp. 335
Definition at line 57 of file ecmult_const_impl.h.
Referenced by bench_wnaf_const(), secp256k1_ecmult_const(), and test_constant_wnaf().