Dash Core  0.12.2.1
P2P Digital Currency
ecmult_const_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef _SECP256K1_ECMULT_CONST_IMPL_
8 #define _SECP256K1_ECMULT_CONST_IMPL_
9 
10 #include "scalar.h"
11 #include "group.h"
12 #include "ecmult_const.h"
13 #include "ecmult_impl.h"
14 
15 #ifdef USE_ENDOMORPHISM
16  #define WNAF_BITS 128
17 #else
18  #define WNAF_BITS 256
19 #endif
20 #define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
21 
22 /* This is like `ECMULT_TABLE_GET_GE` but is constant time */
23 #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
24  int m; \
25  int abs_n = (n) * (((n) > 0) * 2 - 1); \
26  int idx_n = abs_n / 2; \
27  secp256k1_fe neg_y; \
28  VERIFY_CHECK(((n) & 1) == 1); \
29  VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
30  VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
31  VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
32  VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
33  for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
34  /* This loop is used to avoid secret data in array indices. See
35  * the comment in ecmult_gen_impl.h for rationale. */ \
36  secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
37  secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
38  } \
39  (r)->infinity = 0; \
40  secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
41  secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
42 } while(0)
43 
44 
57 static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
58  int global_sign;
59  int skew = 0;
60  int word = 0;
61  /* 1 2 3 */
62  int u_last;
63  int u;
64 
65 #ifdef USE_ENDOMORPHISM
66  int flip;
67  int bit;
68  secp256k1_scalar neg_s;
69  int not_neg_one;
70  /* If we are using the endomorphism, we cannot handle even numbers by negating
71  * them, since we are working with 128-bit numbers whose negations would be 256
72  * bits, eliminating the performance advantage. Instead we use a technique from
73  * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
74  * or 2 (for odd) to the number we are encoding, then compensating after the
75  * multiplication. */
76  /* Negative 128-bit numbers will be negated, since otherwise they are 256-bit */
77  flip = secp256k1_scalar_is_high(&s);
78  /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
79  bit = flip ^ (s.d[0] & 1);
80  /* We check for negative one, since adding 2 to it will cause an overflow */
81  secp256k1_scalar_negate(&neg_s, &s);
82  not_neg_one = !secp256k1_scalar_is_one(&neg_s);
83  secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
84  /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
85  * that we added two to it and flipped it. In fact for -1 these operations are
86  * identical. We only flipped, but since skewing is required (in the sense that
87  * the skew must be 1 or 2, never zero) and flipping is not, we need to change
88  * our flags to claim that we only skewed. */
89  global_sign = secp256k1_scalar_cond_negate(&s, flip);
90  global_sign *= not_neg_one * 2 - 1;
91  skew = 1 << bit;
92 #else
93  /* Otherwise, we just negate to force oddness */
94  int is_even = secp256k1_scalar_is_even(&s);
95  global_sign = secp256k1_scalar_cond_negate(&s, is_even);
96 #endif
97 
98  /* 4 */
99  u_last = secp256k1_scalar_shr_int(&s, w);
100  while (word * w < WNAF_BITS) {
101  int sign;
102  int even;
103 
104  /* 4.1 4.4 */
105  u = secp256k1_scalar_shr_int(&s, w);
106  /* 4.2 */
107  even = ((u & 1) == 0);
108  sign = 2 * (u_last > 0) - 1;
109  u += sign * even;
110  u_last -= sign * even * (1 << w);
111 
112  /* 4.3, adapted for global sign change */
113  wnaf[word++] = u_last * global_sign;
114 
115  u_last = u;
116  }
117  wnaf[word] = u * global_sign;
118 
120  VERIFY_CHECK(word == WNAF_SIZE(w));
121  return skew;
122 }
123 
124 
125 static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
127  secp256k1_ge tmpa;
128  secp256k1_fe Z;
129 
130 #ifdef USE_ENDOMORPHISM
132  int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
133  int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
134  int skew_1;
135  int skew_lam;
136  secp256k1_scalar q_1, q_lam;
137 #else
138  int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)];
139 #endif
140 
141  int i;
142  secp256k1_scalar sc = *scalar;
143 
144  /* build wnaf representation for q. */
145 #ifdef USE_ENDOMORPHISM
146  /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
147  secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
148  /* no need for zero correction when using endomorphism since even
149  * numbers have one added to them anyway */
150  skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
151  skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
152 #else
153  int is_zero = secp256k1_scalar_is_zero(scalar);
154  /* the wNAF ladder cannot handle zero, so bump this to one .. we will
155  * correct the result after the fact */
156  sc.d[0] += is_zero;
158 
159  secp256k1_wnaf_const(wnaf, sc, WINDOW_A - 1);
160 #endif
161 
162  /* Calculate odd multiples of a.
163  * All multiples are brought to the same Z 'denominator', which is stored
164  * in Z. Due to secp256k1' isomorphism we can do all operations pretending
165  * that the Z coordinate was 1, use affine addition formulae, and correct
166  * the Z coordinate of the result once at the end.
167  */
168  secp256k1_gej_set_ge(r, a);
170  for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
171  secp256k1_fe_normalize_weak(&pre_a[i].y);
172  }
173 #ifdef USE_ENDOMORPHISM
174  for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
175  secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
176  }
177 #endif
178 
179  /* first loop iteration (separated out so we can directly set r, rather
180  * than having it start at infinity, get doubled several times, then have
181  * its new value added to it) */
182 #ifdef USE_ENDOMORPHISM
183  i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
184  VERIFY_CHECK(i != 0);
185  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
186  secp256k1_gej_set_ge(r, &tmpa);
187 
188  i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
189  VERIFY_CHECK(i != 0);
190  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
191  secp256k1_gej_add_ge(r, r, &tmpa);
192 #else
193  i = wnaf[WNAF_SIZE(WINDOW_A - 1)];
194  VERIFY_CHECK(i != 0);
195  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
196  secp256k1_gej_set_ge(r, &tmpa);
197 #endif
198  /* remaining loop iterations */
199  for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
200  int n;
201  int j;
202  for (j = 0; j < WINDOW_A - 1; ++j) {
203  secp256k1_gej_double_nonzero(r, r, NULL);
204  }
205 #ifdef USE_ENDOMORPHISM
206  n = wnaf_1[i];
207  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
208  VERIFY_CHECK(n != 0);
209  secp256k1_gej_add_ge(r, r, &tmpa);
210 
211  n = wnaf_lam[i];
212  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
213  VERIFY_CHECK(n != 0);
214  secp256k1_gej_add_ge(r, r, &tmpa);
215 #else
216  n = wnaf[i];
217  VERIFY_CHECK(n != 0);
218  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
219  secp256k1_gej_add_ge(r, r, &tmpa);
220 #endif
221  }
222 
223  secp256k1_fe_mul(&r->z, &r->z, &Z);
224 
225 #ifdef USE_ENDOMORPHISM
226  {
227  /* Correct for wNAF skew */
228  secp256k1_ge correction = *a;
229  secp256k1_ge_storage correction_1_stor;
230  secp256k1_ge_storage correction_lam_stor;
231  secp256k1_ge_storage a2_stor;
232  secp256k1_gej tmpj;
233  secp256k1_gej_set_ge(&tmpj, &correction);
234  secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
235  secp256k1_ge_set_gej(&correction, &tmpj);
236  secp256k1_ge_to_storage(&correction_1_stor, a);
237  secp256k1_ge_to_storage(&correction_lam_stor, a);
238  secp256k1_ge_to_storage(&a2_stor, &correction);
239 
240  /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
241  secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
242  secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
243 
244  /* Apply the correction */
245  secp256k1_ge_from_storage(&correction, &correction_1_stor);
246  secp256k1_ge_neg(&correction, &correction);
247  secp256k1_gej_add_ge(r, r, &correction);
248 
249  secp256k1_ge_from_storage(&correction, &correction_lam_stor);
250  secp256k1_ge_neg(&correction, &correction);
251  secp256k1_ge_mul_lambda(&correction, &correction);
252  secp256k1_gej_add_ge(r, r, &correction);
253  }
254 #else
255  /* correct for zero */
256  r->infinity |= is_zero;
257 #endif
258 }
259 
260 #endif
#define VERIFY_CHECK(cond)
Definition: util.h:64
static int secp256k1_scalar_is_even(const secp256k1_scalar *a)
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
#define ECMULT_TABLE_SIZE(w)
Definition: ecmult_impl.h:28
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n)
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
#define WNAF_SIZE(w)
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a)
Definition: ecmult_impl.h:85
#define ECMULT_CONST_TABLE_GET_GE(r, pre, n, w)
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
int infinity
Definition: group.h:28
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag)
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag)
#define WNAF_BITS
static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag)
#define WINDOW_A
Definition: ecmult_impl.h:15
uint64_t d[4]
Definition: scalar_4x64.h:14
secp256k1_fe z
Definition: group.h:27
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar)
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a)
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a)
static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w)
static int secp256k1_scalar_is_one(const secp256k1_scalar *a)