Dash Core  0.12.2.1
P2P Digital Currency
field_5x52_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef _SECP256K1_FIELD_REPR_IMPL_H_
8 #define _SECP256K1_FIELD_REPR_IMPL_H_
9 
10 #if defined HAVE_CONFIG_H
11 #include "libsecp256k1-config.h"
12 #endif
13 
14 #include <string.h>
15 #include "util.h"
16 #include "num.h"
17 #include "field.h"
18 
19 #if defined(USE_ASM_X86_64)
20 #include "field_5x52_asm_impl.h"
21 #else
22 #include "field_5x52_int128_impl.h"
23 #endif
24 
33 #ifdef VERIFY
34 static void secp256k1_fe_verify(const secp256k1_fe *a) {
35  const uint64_t *d = a->n;
36  int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
37  /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
38  r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
39  r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
40  r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
41  r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
42  r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
43  r &= (a->magnitude >= 0);
44  r &= (a->magnitude <= 2048);
45  if (a->normalized) {
46  r &= (a->magnitude <= 1);
47  if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
48  r &= (d[0] < 0xFFFFEFFFFFC2FULL);
49  }
50  }
51  VERIFY_CHECK(r == 1);
52 }
53 #else
54 static void secp256k1_fe_verify(const secp256k1_fe *a) {
55  (void)a;
56 }
57 #endif
58 
60  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
61 
62  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
63  uint64_t m;
64  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
65 
66  /* The first pass ensures the magnitude is 1, ... */
67  t0 += x * 0x1000003D1ULL;
68  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
69  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
70  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
71  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
72 
73  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
74  VERIFY_CHECK(t4 >> 49 == 0);
75 
76  /* At most a single final reduction is needed; check if the value is >= the field characteristic */
77  x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
78  & (t0 >= 0xFFFFEFFFFFC2FULL));
79 
80  /* Apply the final reduction (for constant-time behaviour, we do it always) */
81  t0 += x * 0x1000003D1ULL;
82  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
83  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
84  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
85  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
86 
87  /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
88  VERIFY_CHECK(t4 >> 48 == x);
89 
90  /* Mask off the possible multiple of 2^256 from the final reduction */
91  t4 &= 0x0FFFFFFFFFFFFULL;
92 
93  r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
94 
95 #ifdef VERIFY
96  r->magnitude = 1;
97  r->normalized = 1;
99 #endif
100 }
101 
103  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
104 
105  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
106  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
107 
108  /* The first pass ensures the magnitude is 1, ... */
109  t0 += x * 0x1000003D1ULL;
110  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
111  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
112  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
113  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
114 
115  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
116  VERIFY_CHECK(t4 >> 49 == 0);
117 
118  r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
119 
120 #ifdef VERIFY
121  r->magnitude = 1;
123 #endif
124 }
125 
127  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
128 
129  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
130  uint64_t m;
131  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
132 
133  /* The first pass ensures the magnitude is 1, ... */
134  t0 += x * 0x1000003D1ULL;
135  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
136  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
137  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
138  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
139 
140  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
141  VERIFY_CHECK(t4 >> 49 == 0);
142 
143  /* At most a single final reduction is needed; check if the value is >= the field characteristic */
144  x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
145  & (t0 >= 0xFFFFEFFFFFC2FULL));
146 
147  if (x) {
148  t0 += 0x1000003D1ULL;
149  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
150  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
151  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
152  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
153 
154  /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
155  VERIFY_CHECK(t4 >> 48 == x);
156 
157  /* Mask off the possible multiple of 2^256 from the final reduction */
158  t4 &= 0x0FFFFFFFFFFFFULL;
159  }
160 
161  r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
162 
163 #ifdef VERIFY
164  r->magnitude = 1;
165  r->normalized = 1;
167 #endif
168 }
169 
171  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
172 
173  /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
174  uint64_t z0, z1;
175 
176  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
177  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
178 
179  /* The first pass ensures the magnitude is 1, ... */
180  t0 += x * 0x1000003D1ULL;
181  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
182  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
183  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
184  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
185  z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
186 
187  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
188  VERIFY_CHECK(t4 >> 49 == 0);
189 
190  return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
191 }
192 
194  uint64_t t0, t1, t2, t3, t4;
195  uint64_t z0, z1;
196  uint64_t x;
197 
198  t0 = r->n[0];
199  t4 = r->n[4];
200 
201  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
202  x = t4 >> 48;
203 
204  /* The first pass ensures the magnitude is 1, ... */
205  t0 += x * 0x1000003D1ULL;
206 
207  /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
208  z0 = t0 & 0xFFFFFFFFFFFFFULL;
209  z1 = z0 ^ 0x1000003D0ULL;
210 
211  /* Fast return path should catch the majority of cases */
212  if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
213  return 0;
214  }
215 
216  t1 = r->n[1];
217  t2 = r->n[2];
218  t3 = r->n[3];
219 
220  t4 &= 0x0FFFFFFFFFFFFULL;
221 
222  t1 += (t0 >> 52);
223  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
224  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
225  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
226  z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
227 
228  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
229  VERIFY_CHECK(t4 >> 49 == 0);
230 
231  return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
232 }
233 
235  r->n[0] = a;
236  r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
237 #ifdef VERIFY
238  r->magnitude = 1;
239  r->normalized = 1;
241 #endif
242 }
243 
245  const uint64_t *t = a->n;
246 #ifdef VERIFY
247  VERIFY_CHECK(a->normalized);
249 #endif
250  return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
251 }
252 
254 #ifdef VERIFY
255  VERIFY_CHECK(a->normalized);
257 #endif
258  return a->n[0] & 1;
259 }
260 
262  int i;
263 #ifdef VERIFY
264  a->magnitude = 0;
265  a->normalized = 1;
266 #endif
267  for (i=0; i<5; i++) {
268  a->n[i] = 0;
269  }
270 }
271 
272 static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
273  int i;
274 #ifdef VERIFY
275  VERIFY_CHECK(a->normalized);
276  VERIFY_CHECK(b->normalized);
279 #endif
280  for (i = 4; i >= 0; i--) {
281  if (a->n[i] > b->n[i]) {
282  return 1;
283  }
284  if (a->n[i] < b->n[i]) {
285  return -1;
286  }
287  }
288  return 0;
289 }
290 
291 static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
292  int i;
293  r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
294  for (i=0; i<32; i++) {
295  int j;
296  for (j=0; j<2; j++) {
297  int limb = (8*i+4*j)/52;
298  int shift = (8*i+4*j)%52;
299  r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
300  }
301  }
302  if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
303  return 0;
304  }
305 #ifdef VERIFY
306  r->magnitude = 1;
307  r->normalized = 1;
309 #endif
310  return 1;
311 }
312 
314 static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
315  int i;
316 #ifdef VERIFY
317  VERIFY_CHECK(a->normalized);
319 #endif
320  for (i=0; i<32; i++) {
321  int j;
322  int c = 0;
323  for (j=0; j<2; j++) {
324  int limb = (8*i+4*j)/52;
325  int shift = (8*i+4*j)%52;
326  c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
327  }
328  r[31-i] = c;
329  }
330 }
331 
333 #ifdef VERIFY
334  VERIFY_CHECK(a->magnitude <= m);
336 #endif
337  r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
338  r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
339  r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
340  r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
341  r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
342 #ifdef VERIFY
343  r->magnitude = m + 1;
344  r->normalized = 0;
346 #endif
347 }
348 
350  r->n[0] *= a;
351  r->n[1] *= a;
352  r->n[2] *= a;
353  r->n[3] *= a;
354  r->n[4] *= a;
355 #ifdef VERIFY
356  r->magnitude *= a;
357  r->normalized = 0;
359 #endif
360 }
361 
363 #ifdef VERIFY
365 #endif
366  r->n[0] += a->n[0];
367  r->n[1] += a->n[1];
368  r->n[2] += a->n[2];
369  r->n[3] += a->n[3];
370  r->n[4] += a->n[4];
371 #ifdef VERIFY
372  r->magnitude += a->magnitude;
373  r->normalized = 0;
375 #endif
376 }
377 
379 #ifdef VERIFY
380  VERIFY_CHECK(a->magnitude <= 8);
381  VERIFY_CHECK(b->magnitude <= 8);
384  VERIFY_CHECK(r != b);
385 #endif
386  secp256k1_fe_mul_inner(r->n, a->n, b->n);
387 #ifdef VERIFY
388  r->magnitude = 1;
389  r->normalized = 0;
391 #endif
392 }
393 
394 static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
395 #ifdef VERIFY
396  VERIFY_CHECK(a->magnitude <= 8);
398 #endif
399  secp256k1_fe_sqr_inner(r->n, a->n);
400 #ifdef VERIFY
401  r->magnitude = 1;
402  r->normalized = 0;
404 #endif
405 }
406 
407 static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
408  uint64_t mask0, mask1;
409  mask0 = flag + ~((uint64_t)0);
410  mask1 = ~mask0;
411  r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
412  r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
413  r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
414  r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
415  r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
416 #ifdef VERIFY
417  if (a->magnitude > r->magnitude) {
418  r->magnitude = a->magnitude;
419  }
420  r->normalized &= a->normalized;
421 #endif
422 }
423 
425  uint64_t mask0, mask1;
426  mask0 = flag + ~((uint64_t)0);
427  mask1 = ~mask0;
428  r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
429  r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
430  r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
431  r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
432 }
433 
435 #ifdef VERIFY
436  VERIFY_CHECK(a->normalized);
437 #endif
438  r->n[0] = a->n[0] | a->n[1] << 52;
439  r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
440  r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
441  r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
442 }
443 
445  r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
446  r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
447  r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
448  r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
449  r->n[4] = a->n[3] >> 16;
450 #ifdef VERIFY
451  r->magnitude = 1;
452  r->normalized = 1;
453 #endif
454 }
455 
456 #endif
#define VERIFY_CHECK(cond)
Definition: util.h:64
static SECP256K1_INLINE void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a)
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag)
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
static void secp256k1_fe_normalize(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t *SECP256K1_RESTRICT b)
#define SECP256K1_INLINE
Definition: secp256k1.h:116
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r)
static void secp256k1_fe_verify(const secp256k1_fe *a)
#define SECP256K1_RESTRICT
Definition: util.h:86
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag)
uint32_t n[10]
Definition: field_10x26.h:14
static SECP256K1_INLINE void secp256k1_fe_mul_int(secp256k1_fe *r, int a)
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m)
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_clear(secp256k1_fe *a)
static SECP256K1_INLINE int secp256k1_fe_is_zero(const secp256k1_fe *a)
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b)
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a)
static SECP256K1_INLINE int secp256k1_fe_is_odd(const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_set_int(secp256k1_fe *r, int a)