Dash Core  0.12.2.1
P2P Digital Currency
field_impl.h File Reference
#include "util.h"

Go to the source code of this file.

Functions

static SECP256K1_INLINE int secp256k1_fe_equal_var (const secp256k1_fe *a, const secp256k1_fe *b)
 
static int secp256k1_fe_sqrt_var (secp256k1_fe *r, const secp256k1_fe *a)
 
static void secp256k1_fe_inv (secp256k1_fe *r, const secp256k1_fe *a)
 
static void secp256k1_fe_inv_var (secp256k1_fe *r, const secp256k1_fe *a)
 
static void secp256k1_fe_inv_all_var (size_t len, secp256k1_fe *r, const secp256k1_fe *a)
 

Function Documentation

◆ secp256k1_fe_equal_var()

static SECP256K1_INLINE int secp256k1_fe_equal_var ( const secp256k1_fe a,
const secp256k1_fe b 
)
static

Definition at line 24 of file field_impl.h.

Referenced by secp256k1_fe_sqrt_var().

◆ secp256k1_fe_inv()

static void secp256k1_fe_inv ( secp256k1_fe r,
const secp256k1_fe a 
)
static

The binary representation of (p - 2) has 5 blocks of 1s, with lengths in { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]

Definition at line 129 of file field_impl.h.

Referenced by secp256k1_fe_inv_var().

◆ secp256k1_fe_inv_all_var()

static void secp256k1_fe_inv_all_var ( size_t  len,
secp256k1_fe r,
const secp256k1_fe a 
)
static

Definition at line 256 of file field_impl.h.

◆ secp256k1_fe_inv_var()

static void secp256k1_fe_inv_var ( secp256k1_fe r,
const secp256k1_fe a 
)
static

Definition at line 219 of file field_impl.h.

Referenced by secp256k1_fe_inv_all_var().

◆ secp256k1_fe_sqrt_var()

static int secp256k1_fe_sqrt_var ( secp256k1_fe r,
const secp256k1_fe a 
)
static

Given that p is congruent to 3 mod 4, we can compute the square root of a mod p as the (p+1)/4'th power of a.

As (p+1)/4 is an even number, it will have the same result for a and for (-a). Only one of these two numbers actually has a square root however, so we test at the end by squaring and comparing to the input. Also because (p+1)/4 is an even number, the computed square root is itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).

The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]

Definition at line 31 of file field_impl.h.